Exercise 22

In Exercises 17-24, find the unknown if the solution of each equation is given:

$$
\text { If } u(x)=\sin x \text { is a solution of } u(x)=f(x)+\frac{4}{\pi} \int_{0}^{x} \int_{0}^{\frac{\pi}{2}} u^{2}(t) d t d t, \text { find } f(x)
$$

Solution

Substitute the solution into both sides of the equation.

$$
\begin{aligned}
\sin x & =f(x)+\frac{4}{\pi} \int_{0}^{x} \int_{0}^{\frac{\pi}{2}} \sin ^{2} t d t d t \\
& =f(x)+\frac{4}{\pi} \int_{0}^{x} \int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1-\cos 2 t) d t d t \\
& =f(x)+\frac{2}{\pi} \int_{0}^{x} \int_{0}^{\frac{\pi}{2}}(1-\cos 2 t) d t d t \\
& =f(x)+\frac{2}{\pi}\left(\int_{0}^{x} \int_{0}^{\frac{\pi}{2}} d t d t-\int_{0}^{x} \int_{0}^{\frac{\pi}{2}} \cos 2 t d t d t\right) \\
& =f(x)+\frac{2}{\pi}(\frac{\pi}{2} x-\underbrace{\left.\int_{0}^{x} \frac{1}{2} \sin 2 t\right|_{0} ^{\frac{\pi}{2}} d t}_{=0}) \\
& =f(x)+x
\end{aligned}
$$

Therefore,

$$
f(x)=\sin x-x
$$

